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The present study deals with the influence of a magnetic-fluid coating, held onto a 
circular cylinder surface by a magnetic field, on the viscous fluid flow structure round 
the cylinder in the Reynolds number range of 1-100. The influence of the coating 
thickness, magnetic fluid viscosity, and Reynolds number on flow separation and drag 
reduction is determined. The interface shape of the magnetic fluid coating and its 
behaviour, depending on the flow parameters, are also established. 

1. Introduction 
It is well known that the flow structure near a solid body surface is determined by 

a balance of a viscous friction force and a pressure drop. For flow past a finite solid 
body, the flow to the rear of the body decelerates due to viscous friction. Then, an 
adverse pressure gradient develops in the flow direction, and flow separation is 
possible. 

As the pressure gradient in the fluid flow near the solid surface is determined by 
viscous friction and the solid surface shape, there are two ways to modify the flow 
structure near the body: either changing the body shape or varying the viscous friction 
on its surface. 

The first is well known and is not the subject of the present study. The second may 
be done in different ways, e.g. by heating a surface or by inserting gas bubbles or low- 
viscosity fluid drops into the fluid surface layer. On the other hand, at the beginning 
of the century a procedure was proposed to modify the flow structure by applying a 
low-viscosity fluid film (Isaak & Speed 1906) on the body surface. Because of the small 
fluid-film viscosity, energy dissipation by friction sharply decreases in the wall region, 
and the pressure gradient remains favourable everywhere. This means that the low- 
viscosity fluid film on the body surface hinders flow separation and reduces drag, too. 

The drawback of this procedure for affecting the flow structure is that the low- 
viscosity fluid film is easily separated from the body surface by the flow. Therefore, the 
present study is concerned with a low-viscosity fluid coating of the body surface which 
possesses magnetic properties and is kept on the surface under a magnetic field. Such 
a fluid is called a magnetic fluid. 

A magnetic fluid is an artificial medium synthesized in the mid-60s and represents a 
colloid solution of small (of the order of 10 nm) magnetic particles coated with a 
surfactant layer. The surfactant prevents the coalescence of particles which are 
attracted to each other due to magnetic interaction. As their size is small the particles 
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are subject to Brownian motion which provides both a uniform particle distribution 
within the fluid volume and energy and momentum transfer from an external magnetic 
field to the carrying fluid. These factors determine the main properties of magnetic 
fluids: these are stable uniform fluids which are able to preserve fluidity and, at the 
same time, to be magnetized under an applied magnetic field (Rosensweig 1985; 
Kamiyama & Shimoiizaka 1985 ; Bashtovoi, Berkovsky & Vislovich 1988 ; Berkovsky, 
Medvedev & Krakov 1993). 

This ability of magnetic fluids to be magnetized allows a layer of such a fluid to be 
held on the body surface under a magnetic field. If the viscosity of such a coating is 
rather small, then as is usual for a low-viscous fluid film, this will affect the flow 
structure and drag. In the present study, this problem is analysed using the example of 
circular magnetic-fluid-coated cylinder. 

2. Governing equations 
A magnetic fluid is a complex system comprising fluid-carrying media, magnetic 

particles, and surfactant which interact with each other and with an external magnetic 
field. Generally speaking, the behaviour of such a system depends in an intricate 
manner on its interior structure, interparticle interactions and interactions between 
particles and the external magnetic field, the shear rate during fluid flow, and the 
magnitude of an external magnetic field. Numerous mathematical models for the 
behaviour of such a system allow the basic factors influencing a magnetic fluid motion 
under an external magnetic field to be specified and the main effects of the external field 
action upon the fluid to be revealed. Among studies of phenomena bound up with the 
free surface of a magnetic fluid and its flow due to external factors, of most use is a 
model which is simple and relevant to physical experiments, does not include the 
interior fluid structure, and assumes the fluid to be superparamagnetic. This model 
(Neuringer & Rosensweig 1964) is based on a stress tensor which is the sum of viscous 
fluid and Maxwell’s magnetic field stress tensors in a magnetizing medium. The fluid 
in this case is considered non-conducting, and magnetization to be proportional to the 
fluid density (i.e. magnetic particle concentration). This yields Maxwell’s stress tensor 
in the form Tk  = Hi B,-~$~p,,H2/2 (Landau, Lifshitz & Pitaevskii 1984). 

A system of equations for incompressible fluid motion in this case is of the form 

J 
where 4 is the body force, and the stress tensor u5k has the form 

g i k  = -psi, + g ; k  + q k ,  

Also, the Maxwell equations must be satisfied, which 
and steady magnetic fields are of the form 

V x H = O ;  V . B = Q ,  

for a non-conducting medium 

(2.2) 
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where H is the magnetic field intensity and B is its induction. In this situation, the 
equation of state for a magnetic fluid is of the following form: 

M = ( M / H )  H ;  M = M(p ,  H ,  T ) .  

At the boundary of a fluid-occupied volume the ordinary hydrodynamic conditions 
must be satisfied : no-slip on solid surfaces, equality of velocities, and tangential and 
normal stresses at the interface of the two fluids. The last condition in the general case 
is of the form 

where a is the surface tension, and R, and R, are the radii of the surface curvature. 
In addition, at the interface of two media with different magnetic properties the 

continuity conditions for a normal induction component and a tangential magnetic 
field intensity component must be obeyed: 

(B(') - B(2)) .  n = 0; (fll) - f12)) x n = 0. (2.4) 

Equation (2.1) differs from the ordinary Navier-Stokes equation only in the form of 
the stress tensor which incorporates the Maxwell stress tensor, qk, of a magnetic field. 
This difference yields an additional body force po M V H .  This force is potential, does 
not depend on fluid velocity, and results only in a pressure re-distribution in the fluid 
volume. In an infinite volume, the available force p,,MVH does not affect the fluid 
motion. However, if the magnetic-fluid volume is finite, then the force po M V H  defines 
its position in space and the free surface shape. Because under the magnetic force 
p o M V H  a magnetic fluid is pulled into a region of a strong magnetic field, it proves 
possible to produce magnetic-fluid coatings using a system of permanent magnets on 
solid surfaces. When permanent magnets are used, the magnitude of this force exceeds 
the fluid weight a dozen times, thus holding the magnetic fluid coating reliably on the 
solid surface. 

Thus, the magnetic force p0 M V H  defines the position and the surface shape of the 
magnetic-fluid volume, thereby influencing the flow structure of a non-magnetic fluid 
around the body. This means that determining the flow structure near a magnetic-fluid 
coating, and the previously unknown coating shape and flow inside it, is a self- 
conjugate problem. 

3. Creation of a circular coating on a cylinder surface 

it is governed by the equation 
If an immovable magnetic fluid has a free surface, then the pressure distribution on 

V p  = p o M V  H. (3.1) 
From (3.1) it follows that a surface with a constant pressure p(x ,  y ,  z )  = const is the 

same as one under a constant magnetic field with an intensity H(x ,  y ,  z )  = const. It is 
known that, for a immovable fluid, a constant-pressure surface coincides with a free 
one. Thus, the immovable magnetic fluid surface coincides with the constant-magnetic- 
field one. 

This means that for a circular magnetic-fluid coating to be created on a cylinder 
surface, a magnetic field possessing axial symmetry and decreasing at a distance from 
the cylinder must be induced. The latter is necessary for the volume magnetic force 
po M V  H to be directed to the symmetry axis and the magnetic-fluid coating to be held 
on the cylinder surface. 
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There are two sources that induce a magnetic field obeying the above conditions. An 
electric current I flowing along the cylinder induces a magnetic field which in 
cylindrical (r ,  8, z)-coordinates is of the form 

H = (0; 1/27cr; O}.  ( 3 4  

Such a magnetic field does not depend on the angle 8, and the magnetic force po M V H  
has a radial component only. If a cylinder is uniformly magnetized normal to the axis, 
then its magnetic field has the following structure : 

(3.3) 

where R is the cylinder radius and MI is the saturation magnetization of the material 
from which the cylinder is made. In this case, the magnitude of the field H =  
MI R2/2r2  also does not depend on the angle 8 and the free magnetic fluid surface has the 
shape of a circular cylinder. 

Of significance is the problem of the stability of a cylindrical magnetic-fluid surface. 
There are at least two causes of instability. First, the cylindrical surface of the fluid is 
unstable due to capillary forces (Rayleigh 1878). However, the volume force po MVH 
normal to the symmetry axis is able to suppress this mode of instability (Bashtovoi & 
Krakov 1978). The magnetic field influence is characterized by a dimensionless 
magnetic Bond number Bo, = po M V H  h2/a being the magnetostatic-to-capillary 
pressure ratio. In Bashtovoi & Krakov (1978), it is shown that for values of the 
magnetic Bond number greater than unity (Bo, > 1, in this case h is the radius of an 
interface a )  the cylindrical surface of a magnetic fluid is stable. 

For a conductor with a current I = 10 A and 2 mm radius the magnetic field ( H  = 

1/27cr FZ 0.8 kA m-l) is not high and the linear magnetization law M =  XHmay be used 
for a magnetic fluid. x = 5 and g = lo-’ N m-l are typical values for the coefficients 
of magnetic susceptibility x and surface tension g. For these values of the parameters 
the magnetic Bond number is equal to Bo, z 3, and the cylindrical magnetic fluid 
surface is stable. 

If the cylinder is a magnet magnetized transverse to the axis, then for the above- 
mentioned physical parameters the magnetic Bond number is greater than unity with 
a cylinder saturation magnetization of M ,  > 1.2 kA m-l. As MI M 100 kA m-l is a 
characteristic magnitude of the magnetization of permanent magnets, in this case the 
magnetic Bond number greatly exceeds unity, and the cylindrical surface must be 
stable. 

However, magnetic fields are characterized by specific modes of free surface 
instability developing under magnetic fields. So, a magnetic field normal to a free 
magnetic-fluid surface and greater than some critical value gives rise to cone-shaped 
peaks on this surface (Cowley & Rosensweig 1967). The stability of the free magnetic- 
fluid surface is detailed in Bashtovoi et al. (1988) where it is also shown that the 
instability starts if the value of the surface instability criterion Si = po M2,/(f~)l’~ is 
greater than 4, where f is the body force density (f = pg for gravitational forces) and 
M ,  is the magnetization vector component normal to the free magnetic fluid surface. 

Like the current conductor, the magnetic field (3.2) has an azimuthal component 
only, the normal magnetization component M ,  equals zero, and the magnetic fluid 
surface is stable. With the cylindrical magnet, the situation is more severe as H, =t= 0. 
In this case, f =  p o M V H  and the value of the Si criterion is affected by the fluid 
magnetization law and by the value of the cylinder magnetization. In regard to a 
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magnet with a magnetization MI = 10 kA m-l, the linear fluid magnetization law may 
be used, and then we have Si NN 20 for the above values of the physical parameters, i.e. 
in the field of a relatively weak permanent magnet the cylindrical surface is unstable. 
Since the fluid magnetization grows more weakly than the magnetic field that 
magnetizes it, the case may be opposite for rather strong magnets. Indeed, for a 
cylinder with a magnetization of 200 kA m-l, the magnetic-fluid magnetization may be 
considered constant. For M ,  = 10 kA m-l we shall obtain Si z 1.1. This provides the 
stability of the cylindrical surface of the magnetic fluid. 

Thus, through the use of a current flowing along the cylinder or due to the magnetic 
properties of the material from which a cylinder is made, a magnetic-fluid coating its 
surface may be created, also having a cylindrical shape. Such a coating is stable and 
is held on the magnetic surface by a non-uniform magnetic field. 

4. Flow structure change and drag reduction by magnetic-fluid coating 
4.1. Small Reynolds numbers: analytical investigation 

Let us consider flow near a magnetic-fluid-coated cylinder (figure 1) by making 
simplifying assumptions. The interface between the magnetic fluid and the outer flow 
is affected by magnetic and hydrodynamic forces. In the present section, the magnetic 
forces are assumed to be far greater than the hydrodynamic ones. This means that the 
surface shape of the magnetic fluid coating is determined by the magnetic forces alone 
and is a circular cylinder. This situation essentially simplifies the problem since 
boundary conditions can be written at a fixed interface which is known beforehand. 
In addition, let us simplify the equation of motion. First, let us restrict our 
consideration to steady flow past a cylinder. Moreover, for small flow velocities the 
inertia terms in the equation of motion (2.1) are small and can be modified. With a 
magnetic fluid moving near the cylinder, these may be neglected, i.e. Stokes' 
approximation can be employed. Oseen's approximation can be used for the outer fluid 
flow, according to which the inertia term ( v .  V )  v can be replaced by ( U .  V )  u where U 
is the flow velocity at infinite distance from the cylinder. Simultaneous use of Stokes' 
and Oseen's approximations is possible because these have the same accuracy near the 
cylinder surface (Lamb 1932). Then the stated problem is governed by the equations 

J o  

pl( U .  V )  v,  = - v p ,  + 7, Au,, 
v.u, = 0; v - v ,  = 0, 

(4.1) 

where subscripts 1 and 2 refer to the outer flow and the magnetic fluid, respectively, and 
p ;  is the magnetic fluid pressure (Vp! = V p ,  +p0 M V H ) .  

The fluid motion must obey the following boundary conditions: the no-slip 
condition for the solid surface 

v = O ;  r = R ;  (4.2) 

equality conditions for velocities and shear stresses at the interface of the magnetic fluid 
and outer flow 

v,, = V,, = 0; V," = vzo, I 
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FIGURE 1. Problem geometry. 

d the condition of uniform flow at infinite distance from t z cylinder 

A general solution to Oseen’s equation is well known (Lamb 1932), and finding a 
solution to Stokes’ equation involves no difficulty. With these solutions obeying 
boundary conditions (4.2)-(4.4) the fluid velocity and pressure distributions can be 
written as 

[ i( r’2)]}? 
Usin0 17, 

vlH=- --F(lnr’+l)+A In/+-  1-- 
D iZ7, 

(4.54 

(4.5b) 

P I  =pz+ Tl ucos Dr 0 (2A+?F), 

(4.5 d )  

(4.5e) 

2 - . z g  - 71 (1-62+21n6)+4r’(62-1)lnr’ 

+po+[pM(r‘)-pM(1/6)], (4.5f) 
where r’ = r/a (r’ = 1 corresponds to the interface, r’ = 6 corresponds to the solid 
surface), 
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FIGURE 2. Dependence of the drag ratio G on the coating thickness. y Re18 = 0.1. 

and the constants entering the above expressions are 

A = 1-62[1-21n6(1-ln6)], F =  (1-62)2-4621n26, 

Here y = 1.781 1 . . . is Maskeroni's constant, r' = 1 corresponds to the interface, r' = 6 
corresponds to the solid surface. 

The drag on a magnetofluid-coated cylinder can be calculated as an integral along 
the interface from the following expression : 

6 = R/a ,  Re = p1 U2R/ql. 

= W,G, (4.6) 
- 1 - 2 In ( y  Re/8)  1 + NF/(2A) 
- 

Wo 1 - 2 In (y Re/86) NF 1 - In ( y  Re/86) 
A 1 - 2 In ( y  Re/86) 

1+2- 

where W, = 8 7 ~ 7 ~  U / [  1 - 2 In ( y  Re/8)] is the known Lamb formula for the drag per unit 
length on an infinite cylinder R in radius, N = ql/vz is the viscosity ratio of two fluids. 
The quantity G in (4.6) is the ratio of the drag on a magnetic-fluid-coated cylinder to 
that on an uncoated one and characterizes the variation in cylinder drag when a 
magnetic fluid coating is applied over the cylinder surface. This quantity depends on a 
coating thickness, fluid viscosity ratio, and Reynolds number. Figure 2 plots the drag 
ratio G us. 6 at y Re18 = 0.1, with the relative viscosity N taking values of 1000, 20, 5, 
0.2. It is seen that for a small coating thickness G +  1 as 6-t 1 ,  i.e. a small thickness 
coating hardly affects the cylinder drag. As the coating thickness increases, its influence 
on the cylinder drag depends on the relative viscosity N :  for small values of N the drag 
on the magnetic-fluid-coated cylinder increases, and as the viscosity ratio grows the 
cylinder drag falls with decreasing 6. This means that a magnetic fluid coating with a 
small viscosity (large values of N )  changes the flow structure and pressure distribution 
in a such manner that the drag on the coated cylinder becomes smaller than that on 
the uncoated one. 
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FIGURE 3. Influence of Reynolds number on drag reduction. 6 = 0.9. 

Figure 3 plots the drag ratio G us. Reynolds number Re at 6 = 0.9 and N = 10 and 
N = 100. It is seen that with increasing Reynolds number, G decreases, i.e. the effect 
of applying a coating over the cylinder surface is enhanced. This is, apparently, bound 
up with different contributions of friction drag and pressure drag to the total drag 
magnitude. 

In fact, there are several factors responsible for the drag change on the cylinder when 
its surface is coated with a magnetic fluid. First, the coating increases the cylinder 
cross-section and the pressure drag rises, with consequent growth of the pressure drag 
coefficient CDp,  defined in the usual way through the cylinder diameter. However, if the 
magnetic fluid viscosity is small, then flow boundary friction decreases and, 
accordingly, the friction drag coefficient C,, reduces. The total effect depends on the 
relationship between these two factors as both they depend on coating thickness. 

For a sufficiently small viscosity of the magnetic fluid the situation is possible where 
the decrease in CDf is greater than the increase in C,,, so that the total drag coefficient 
will be smaller than in the case of the uncoated cylinder, as seen in figure 2. But friction 
makes its main contribution to C,  only at small Reynolds numbers. When the 
Reynolds number increases, the structure of the flow around the uncoated cylinder 
becomes more complicated and, as will be exemplified below by figures 4 and 5,  
applying a low-viscosity coating will result in non-separated flow, i.e. in a considerable 
C,, decrease. Therefore, this factor becomes still more important when the Reynolds 
number increases, thus reducing the coefficient G in figure 3 .  

4.2. Moderate Reynolds numbers : numerical simulation 

An analytical study of the problem under consideration is restricted to small Reynolds 
numbers and gives no possibility of analysing changes in the flow structure, flow 
separation and pressure distribution when a coating is applied over a cylinder surface 
under real flow velocity conditions. A detailed study of the influence of the coating on 
the flow structure and magnetic-fluid-coated cylinder drag has been made numerically. 
An infinite cylinder has been examined, and the problem has been considered to be 
two-dimensional. As fluids are assumed incompressible, stream function-vorticity 

= -oi, (4.8) 
where the stream function y9 is related to velocity field by v, = a$/ay and vy = 
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-a$/ax, and the vorticity w is determined by the relation o = V x 0. Subscripts i = 1 
and i = 2 refer to the outer flow and magnetic fluid, respectively; Li = vi/vl is the 
kinematic viscosity ratio, and the cylinder radius is used as a characteristic dimension. 

On the solid cylinder surface, a no-slip condition (4.2) is used as a boundary 
condition, with uniform flow condition (4.4) at infinity. 

At the fluid interface there is another type of physical boundary condition: equality 
of tangential velocities and shear stresses. These conditions can be written in the form 

'1, = ' 2 7 ,  (4.9) 
(4.10) 

where v, is the velocity tangential to the interface, gik is the tensor of viscous stresses, 
n and t are the unit vectors normal and tangential to the line of the interface. The 
interface is assumed to be fixed and the normal velocity at each point of the interface 
to be equal to zero. 

For the problem to be solved, the finite element method has been adapted, and its 
formulation for the equation of motion in the stream function-vorticity variables is 
cited in Krakov (1992) and Kamiyama & Krakov (1993). This method allows a high- 
accuracy calculation of flow near complex-geometry bodies in the case of multiphase 
flows because, based on the boundary conditions (4.9) and (4.10), the boundary 
conditions for vorticity at the fluid interface have been formulated within the 
framework of this method. 

The numerical study is made on a grid composed of 5751 nodes. With the problem 
symmetry taken into account, a grid is constructed on the half-space y > 0. The 
domain is subdivided into 71 segments by an angle 8, the angle A0 in the rear part of 
the cylinder decreases according to a quadratic law. Each line 8 = const is subdivided 
into 20 equal pieces inside the magnetic fluid layer. In the domain outside the magnetic- 
fluid coating, the first piece is chosen equal to the one inside the coating, and the 
subsequent pieces increase, following a geometric progression, whose denominator is 
independently chosen such that the last point will be at the external boundary of the 
design domain. The distance from the cylinder to the flow entrance is chosen equal to 
20 (the cylinder radius serves as a characteristic dimension), equal to 100 up to the exit 
and equal to 40 up to the upper flow boundary. These values are selected so that the 
boundary conditions at the external boundary of the domain will exert no influence on 
the computational accuracy. Uniform flow ($ = y )  and vorticity-free flow (w = 0) are 
taken as the boundary conditions at the external boundary. 

Test computations for an uncoated cylinder have shown that over the Reynolds 
number range Re = 1-100 the drag coefficient C, differs by no more than 2.5 YO from 
that calculated in well-known previous papers (Takami & Keller 1969; Dennis & 
Chang 1970; Fornberg 1980). 

The flow structure near a magnetic-fluid-coated cylinder is determined by using three 
parameters : Reynolds number (Re) ,  cylinder-to-coating radius ratio (I3 = R/a) ,  and 
viscosity ratio ( N  = 7, /qZ) .  The problem has been analysed over a broad parameter 
range: Re = 1-100, N = 1-1000, 1/13 = 1-1.7. 

Figure 4 illustrates how the flow behaviour changes with decreasing magnetic-fluid 
viscosity. If the magnetic-fluid viscosity is comparable with that of the outer fluid 
( N  = l), then flow separation is observed behind the cylinder, and inside the coating the 
flow consists of two closed cells (figure 4a). The boundary between these two cells is 
always located exactly at the external flow separation angle, as the condition of the 
equality of tangential velocity v,, = v,, must be fulfilled on the interface: if the 
recirculation flow arises in the outer fluid flow and tangential velocity u,, changes 

@nk 7i = @nk 7i,  
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FIGURE 4. Streamlines at different viscosity ratio for Re = 10, l /S  = 1.4: (a) N = 1 ,  (b) N = 10, 
(c) N = 100, (6, N = 1000. 

direction, the corresponding recirculation has to arise in the magnetic fluid coating. As 
the magnetic-fluid viscosity decreases (i.e. when the parameter N increases) the 
separation flow region decreases in size (figure 4 b), eventually completely disappearing 
(figure 4c, d) .  Flow inside the magnetic-fluid layer becomes therewith single-cell, and 
thus the cell centre is shifted downstream with increasing parameter N .  The magnitude 
of the pressure gradient at the rear part of the cylinder grows and the flow structure 
approaches that of an ideal fluid. 

Even a thin magnetic fluid layer is able to prevent flow separation past a cylinder. 
Figure 5 shows that for Re = 10 flow is non-separated, whereas for an uncoated 
cylinder, flow separation is seen at Re z 5.  However, increasing the Reynolds number 
results in the onset of a separated flow region behind the cylinder, whose length is 
nevertheless smaller than in the case of the uncoated cylinder (figure 5a, b). 

As has been shown in analysing flow at small Reynolds numbers, coating a cylinder 
with a magnetic-fluid layer not only changes the flow structure but also the drag 
coefficient C,. This change is determined by the relationship between two factors: drag 
growth due to the cylinder cross-section increase because of the coating and reduction 
due to the low viscosity of the coating. The total effect depends on both the coating 
thickness (parameter 8) and the magnetic fluid viscosity (parameter N ) .  The flow 
structure is also determined by the Reynolds number. Therefore, the Reynolds number 
is the third, no less important, parameter of the problem. Let us examine the influence 
of these factors upon the value of the coefficient G. 

Starting with a Reynolds number around unity, the pressure drag coefficient CDp, 
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FIGURE 5. The q? field at different Reynolds number for N = 100, 1/6 = 1.1. (a) Re = 1, 
(b) Re = 10, (c)  Re = 30, (d) Re = 100. 
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FIGURE 6.  Drag ratio G us. coating thickness. N = 100, (a) Re = 1 ; (b) Re = 10; (c) Re = 20; 
(d) Re = 100. Experimental data: A, Re = 7.28;  0, Re = 17.5. 

dependent mainly on the non-symmetric behaviour of the pressure distribution along 
the cylinder surface because of flow separation, becomes predominant. This means that 
with growing Re, the drag reduction coefficient G must fall more quickly than at small 
Reynolds numbers since, as seen from figures 4 and 5,  the magnetic-fluid coating 
changes the flow structure considerably and, accordingly, the pressure drag coefficient 
CDp. These points are clearly illustrated in figure 6, showing the drag reduction 
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FIGURE 7. Drag ratio 
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FIGURE 8. Influence of viscosity ratio N on drag ratio. (a) Re = 1, 1 /S = 1.1 ; 
(b) Re = 10, 1/S = 1.4. 

coefficient G as a function of coating thickness 1/6 for different values of the Reynolds 
number. 

For Re = 1 the curve G(1/6) is monotonic in nature: the cylinder drag grows with 
increasing coating thickness. This suggests that the pressure drag grows with increasing 
cylinder cross-section more quickly than the friction drag falls, although the viscosity 
ratio in this case is equal to 100. At large Reynolds numbers, a minimum appears in 
the curve : with increasing coating thickness, the cylinder drag first falls. 

As has already been mentioned, the reason for this fall is the more substantial 
influence of the coating on the flow structure and, hence, on the pressure drag at high 
Reynolds numbers. This is illustrated by the curve G(Re) shown in figure 7. Unlike 
previous data (Polevikov 1986), the relation of G to Re is monotonic. 

Although for the data plotted in figures 6 and 7 it is seen that at Re = 1 the 
unequality G > 1 is satisfied, it is possible to attain a cylinder drag reduction even for 
low Reynolds numbers by using a magnetic fluid with lower viscosity. Figure 8 
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FIGURE 9. Critical value of viscosities N* us. Reynolds number. (a) 118 = 1 . 1 ,  (b)  118 = 1.4. 
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demonstrates that the relation G ( N )  is monotonic in character so that there always 
exists some critical value of N*, above which the coefficient G is less than unity. So, N* 
is the value of the viscosity ratio above which drag reduction is possible. This critical 
value us. Reynolds number is plotted in figure 9. 

4.3. Experimental results 
For an experimental determination of the drag of a magnetic-fluid-coated cylinder a 
method involving the free fall of the cylinder is used. This method is most exact, and 
the influence of the wall of the vessel is the only complicating factor. According to the 
data of Stalnaker & Hussey (1979) in the case of small Reynolds numbers and a 1 : 10 
ratio of the cylinder diameter and the distance between the walls, the drag is larger, by 
a factor of virtually two, than the force Fm in an unbounded volume, while for a 1 : 30 
ratio it amounts to 1.25Fm (for Re + 1). This is explained by the fact that the 
perturbations generated by the cylinder within the flow are attenuated somewhat more 
slowly than, for example, would be the case for a sphere, where the effect of the walls 
is virtually imperceptible, even for the 1 : 10 ratio. 

A rectangular vessel with a 15 x 15 cm cross-section, 40 cm in height, is used in the 
experiment. An elastomer with a samarium-cobalt filler is used for the preparation of 
the cylindrical magnet. The dimensions of two samples are 4.3 mm and 7.5 mm in 
diameter do and 67 mm in length; the saturation magnetization of the material is 
250 kA m-l. A glass tube with an outer diameter of 5.6 mm for one magnet and 8.5 for 
the other is fitted tightly over the magnet to prevent any direct contact with the 
magnetic fluid, and also to maintain the cylindrical shape of the body (figure 10). 

Although the presence of the vessel walls increases the drag, this addition remains 
a constant quantity and can be taken into consideration. The vessel is filled with silicon 
oil PMS-200 of viscosity v, = 1.95 x lop4 m2 s-l. The weight of the cylinder 5.6 mm in 
diameter immersed in silicon oil is F, = 4.55 x N. The cylinder velocity is measured 
by a laser stop watch. A helium-neon laser beam (with a diameter of about 0.5 mm) 
passes through the vessel and is reflected by means of an optical-glass rectangular 
prism to pass once again through the vessel in the opposite direction, impinging on a 
photodiode. The distance between the forward and reflected laser beams is 46 mm and 
provides a basis for measurements. While moving the cylinder intersects the laser beam 
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FIGURE 10. The experimental set-up. 

twice. During the first intersection the photodiode signal switches on the frequency 
meter, while the second intersection of the beam it cuts it off. We are thus able to 
determine the time required to cover the base distance, i.e. the velocity at which the 
cylinder is moving. The measuring segment of the installation can be set at various 
distances from the bottom of the vessel in order to monitor the steady-state motion of 
the cylinder. The fluid temperature is controlled within an accuracy of 0.1 "C. In the 
absence of any coating, the cylinder velocity is U, =25.3 cm s-', i.e. the Reynolds 
number is Re = Uodo/vs  = 7.28. However, if the cylinder is moving in an infinite 
volume, the drag is equal to Fm = C, (Re) p V d ,  1/2 ( I  is the cylinder length), and since 
for Re = 7.28 the drag coefficient C, = 3.12, then Fm = 3.65 x lo-' N, i.e. F m / 4  = 
1.25. Thus, although L/do  = 30 ( L  = 15 cm in the dimension of the vessel in cross- 
section), the drag due to the effect of the vessel walls causes an increase of 25 %. 

After measuring the cylinder velocity without a coating, water-based magnetic-fluid 
coatings are applied over the magnet in steps of 0.5 cm3 and the velocity of the steady- 
state motion of the cylinder is measured again. Since the density of the magnetic fluid 
is pm = 1220 kg mP3, and the density of silicon oil is ps = 973 kg mP3, applying the 
magnetic-fluid coating increases the weight of the cylinder. Since the Reynolds number 
is small, the drag may be regarded as directly proportional to the cylinder velocity. 
With consideration of these two factors, the drag reduction G = F/& is defined as 
G = (1 +AF/F,)  U,/U where AF is the change in the weight of the cylinder after 
applying the coating; U is the cylinder velocity. The experiment is repeated for each 
coating thickness. The r.m.s. error in the data for each series of experiment does not 
exceed 0.2 YO. The results of the experiments are shown in figure 6 by triangles. It can 
be seen that the character of the experimental drag coefficient dependence on the 
coating thickness is quite similar to the numerical one for Re = 10. 

The difference can be explained by two factors. First, the experimental Reynolds 
number is about 8 and the numerical one is equal to 10. Secondly, a more significant 
factor is the viscosity of the magnetic fluid. The real viscosity of a water-based 
magnetic fluid under a magnetic field depends in a complex fashion on the magnitude 
of the magnetic field and the time spent within that field. Therefore, the value of 
v, = 4 x lop6 m2 s-' measured by means of the capillary viscometer in the absence of a 
magnetic field, more than likely does not correspond to the viscosity of the magnetic 
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fluid in the coating, and N = vs / v ,  z 50 can be used only as an estimate of the viscosity 
ratio. Thus, we could compare the data dependence only qualitatively, not the 
numerical values. 

In the second experiment the larger cylinder is used, with a diameter of 8.5 mm and 
weight 4 = 0.108 N. As this cylinder without a coating falls through PMS-200 silicone 
oil the Reynolds number is Re = 17.5, which corresponds to Fm = 0.0963 N. &/Fa = 
1.12, and this indicates a reduction in the influence of the walls as the Reynolds number 
increases, despite the fact that the ratio L/do  diminishes from 30 to 18. As in the 
previous case, the thickness of the coating is changed by applying magnetic fluid with 
a volume from 0.5 to 2.5 cm3 in steps of 0.5 cm3. A layer with a volume of 3 cm3 (6 = 

0.73) proves to be unstable and drawn up from the cylinder by viscous flow, leaving a 
magnetic-fluid droplet wake. Squares identify this experiment in figure 6. Each point 
has been obtained by averaging the data from 10 independent measurements. The 
r.m.s. error in this case also does not exceed 0.2 %. It can be seen that the experimental 
data are very close to the numerical results for Re = 20, N = 100. 

5. Deformation of the magnetic-fluid coating interface by viscous flow 
5.1. Analysis for  small Reynolds numbers 

It has been assumed above that the magnetic forces are stronger than the hydrodynamic 
ones, and the interface deformation of the magnetic-fluid coating can be neglected. 
However, the real relationship may be proved to be such that the interface shape will 
greatly differ from a circular cylinder. 

A reason for deformation of the interface between the magnetic fluid and the outer 
flow is the difference in the hydrodynamic normal stresses over a circular surface under 
no magnetic field. A magnetic field altering the magnetic-fluid pressure is able to 
compensate for this difference. However, as the magnetostatic pressure in the magnetic 
field of a cylinder depends only on the radial coordinate and does not depend on the 
angle, such compensation of the hydrodynamic normal angle-dependent stresses 
requires the coating thickness to be varied with respect to the angular coordinate. 
Thus, a stable magnetic-fluid coating of a circular cylinder affected by a non- 
magnetic fluid flow must have an angular-coordinate-dependent thickness. The 
behaviour and the magnitude of the variation in the coating thickness, i.e. its 
deformation, is obviously determined by a balance of the magnetic and hydrodynamic 
forces and must depend on all the problem parameters: coating thickness, Reynolds 
number, viscosity ratio, and magnetic-to-hydrodynamic force ratio. 

First, let us consider the coating deformation within the framework of Oseen's 
approximation adapted above for analysing the drag. With no flow a cylinder R in 
radius is coated with a magnetic-fluid layer, whose cylindrical surface has a radius a. 
When affected by the flow, the magnetic-fluid coating surface acquires a shape r = 
{(O) = a[l + f ( O ) ]  which is unknown beforehand. Assume that the deformation mag- 
nitude is much less than the layer thickness, i.e. If(O)l < 1-6 where 6 = R/a .  In this 
case, it may be considered that the interface deformation slightly alters the velocity and 
pressure fields. Then the latter may be denoted u = uo + u', p = pa +p' where uo, pa are 
the velocity and pressure fields for a cylindrical coating surface shape, and their 
alteration due to the coating deformation obeys the inequalities v' < uo, p' < pa.  Below, 
expressions (4.5) determined by Oseen's approximation will be employed for the fields 

A condition for the equality of normal stresses (2.3) in a cylindrical coordinate 
of uo, PO. 

system can be written as (surface tension is neglected) 
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where S = d</de. With allowance for the small magnitude of the deformation 1flO)l 
and for changing velocity u' and pressure p' fields, this condition can be written at the 
interface r = a as (accurate to the terms of the first order of infinitesimals) 

Equation (5.2) represents an equation with respect to .f of the form 

C, cos O + (C, + C, cos O ) f - f C ,  sin 0 = 0, (5.3) 

where the constants C,, C,, C, are determined by the fields of u', po ,  and the constant 
C, depends on the hydrostatic pressure dp,/dr alone. It is natural to suppose that 
the magnetic forces are predominant for small surface deformations, i.e. the relation 
C, % C,, C,, C, is valid. The validity of this supposition will be evaluated below, 
proceeding from the solution found and the explicit form of the quantity dp,/dr. 
Then equation (5.3) reduces to the form f (0 )  = C, cos O/C,, i.e. the deformed surface 
is governed by the expression 

(5.4) 

With the explicit form of expressions (4.5) for the velocity and pressure taken into 
account, (5.4) can be written 

f l0 )  = -""( - $ ) l  f,(s)cose, 
a' r=a 

(5.5) 

where the functionfo(6) is of the form 

(5.6) 
s4 - 12a2 - 13 - 46' In 6(7 -4 In 6)  

"(') = f[ln (y  Re/86) - 11 FN+$4[2 In (y Re/86) - 11' 

Thus, the results obtained for the small-deformation approximation and restricted 
to low Reynolds numbers show that the deformation surface represents a circular 
cylinder, as before, but shifted by the flow relative to the solid cylinder. The magnitude 
of this shift appears directly proportional to the fluid viscosity and flow velocity and 
inversely proportional to the magnetic field non-uniformity. 

The magnetic field of a live current conductor ( H  = 1/27cr) is not large, and in this 
case the linear magnetization law ( M  = xH) may be utilized. Then the magnetostatic 
pressure gradient is equal to 
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FIGURE 1 1 .  Dependence of deformation magnitude on coating thickness. (a) f ,(S)/S, (b) fo (8 ) /S3 .  

and the magnitude of the interface deformation is described by the expression 

f o ( 4  f ( 8 )  = €1 __ cos 8, 
6 

where = 4v1 UR7c2/po xZ2. A similar expression governs the function f ( 8 )  in the case 
of a strongly magnetized cylinder, except that the proportionality factor has the form 
eM = q2 U/po  M ,  M,R where M ,  is the saturation magnetization of the magnetic fluid. 
If the cylinder is magnetized weakly, then the surface deformation depends on the 
coating thickness in the following fashion : 

where ex = ql U/po  xw R. 
Figure 11 plots the behaviour of the function f , (S ) /S  (curve a) andf,(6)/63 (curve b)  

us. coating thickness for N = 240, Re = 0.03. It is seen that the deformation magnitude 
grows sharply at small (6+ 1) and large (6-tO) magnetic-fluid layer thicknesses. This 
takes place because for small coating thicknesses the circulation flow in a magnetic- 
fluid layer can occur only at large pressure drops, i.e. at a high surface deformation. 
For large coating thicknesses the pressure gradient necessary to give rise to circulation 
flow decreases but the magnetic field gradient holding the coating diminishes still more 
strongly. Thus, from the viewpoint of providing magnetic-fluid coating stability, i.e. 
the minimal interface deformation subjected to the external flow, the coating thickness 
6 z 0.5 is optimal. As seen from figure 11, the deformation is minimum over this 
coating thickness range. 

5.2. Analysis for moderate Reynolds numbers 
An analytical study has allowed us only to reveal the general behaviour of the coating 
shape when affected by the flow but not to establish quantitative data because it is 
restricted to small Reynolds numbers and low deformation of the coating. The most 
interesting question is the mutual interaction between the fluid flow structure and 
shape of the coating interface. Such mutual interaction can be studied only in a full 
problem statement. The flow structure and coating shape must be defined 
simultaneously. But here we run into a limited choice of analytical and numerical 
methods for such a kind of problem. 
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Kamiyama & Satoh (1988) have analysed this problem numerically, using the small- 
parameter method and restricting to a small coating thickness and small deformation. 
Now we are studying this problem without any restrictions. 

The formulation of the interface conditions is the main difference between the 
analysis of flow past an arbitrary coating and a cylindrical one. Now condition (4.9) 
must be written as 

where the coordinate n is normal to the surface, and condition (4.10) assumes the form 

N(w, + 2kv,) = (w,  + 2kv,), (5.8) 

where the coordinate r is tangential to the interface, v, is the velocity at the interface, 
and k is its curvature. Conditions (5.7) and (5.8) permit numerical boundary conditions 
to be used for determining the vorticity on both sides of the interface. These boundary 
conditions are detailed in Kamiyama & Krakov (1993). 

Also, the normal stress equality condition (2.3) must be satisfied at the interface and 
can be reduced to the form (with constant surface tension coefficient aa/ar = 0) 

’PM 

ar , 
-- = BO - 

N (5.9) 

where W = rl U/a is the Weber number, Bum = p0 MI V HI a2/a is the magnetic Bond 
number, wi is equal to w1 or w2 depending on surface curvature: at a surface point 
where the interface is convex (k < 0) wi = w1 ; at a surface point where the interface is 
concave (k  > O)wi = w2. 

The right-hand side of (5.9) can be written in a polar coordinate system with respect 
to a cylinder in the form 

(5.10) 

where r = [(O) is the equation for the interface, and c = dC/dO. 
Relation (5.9) can be considered as a first-order differential equation with respect to 

the surface c(O), if its left-hand side is assumed to be constant. This has been used to 
solve the problem numerically. In addition, as has been mentioned above, for a 
magnetized cylinder the characteristic values of the Bond number at the coating surface 
are of the order of 1000. W has the order of unity, and the term dkldr in (5.9) is of 
order of Therefore, in this analysis this term has hardly any influence on the 
calculation results, and the ratio of Weber number to magnetic Bond number W, = 

W/Bom has been used as a characteristic parameter. 
The following approach is used. First, the problem is solved for a given interface (at 

the first step with r = a) under boundary conditions (5.7) and (5.8). Then, equation 
(5.9) yields a new interface: the left-hand side of equation (5.9) is determined in terms 
of preliminarily calculated values of v,, w and is considered constant. In this case, (5.9), 
with its right-hand side in the form of (5.10), is the first-order differential equation 
for 5. 

Upon solving this equation for a fixed volume of coating and defining a new position 
of the interface, the grid is reconstructed according to the scheme described above, to 
find the interface. Equations of motion (4.7) and (4.8) are again solved for a new 
interface. To determine 6 the procedure is repeated until the interface C(O) ceases to 
vary. 
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FIGURE 12. Flow structure and shape of the interface pattern for Re = 10, 1/S = 1.6, 
N = 100, W, = 0.003. 
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FIGURE 13. Change of the interface shape with Reynolds number for W, = 1.75 x 1/6 = 1.5, 
N =  1. (a) R e =  1 ;  (b) R e = 7 ;  (c) R e =  20; (d) R e =  30. 

A numerical study is done using the same grid as in the case of the non-deformed 
interface (5751 nodes) but the grid has been adapted to the interface. The system of 
algebraic equations has been solved by Gauss-Seidel’s iteration method within an 
accuracy of 5 x lop6. Runge-Kutta’s method is used to determine an interface shape 
from equation (5.9), with its right-hand side in the form of (5.10). The solution 
obtained is approximated by cubic splines. 

The flow structure and magnetic-fluid-coating surface shape for Re = 10, 6 = 1.6, 
N = 100, W, = W/Bo, = 0.003 are shown in figure 12. As the magnetic fluid viscosity is 
small ( N  = loo), there is no flow separation in the external flow but the flow structure 
in the coating is intricate in nature, and even a small recirculation flow region is 
observed. In this case, the coating is oblate: in cross-section it has a markedly larger 
size to the rear. The coating has the minimum thickness in the region of the forward 
stagnation point. 

It is obvious that the surface deformation must depend on the flow structure. As it 
is easier to obtain flow structure differences at magnetic fluid viscosity values that are 
not too small, the case N = 1 has been analysed. Figure 13 shows the coating shape for 
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FIGURE 14. Deformation of the interface at the front and rear critical points versus the ratio of 
non-magnetic to magnetic fluid viscosity. Re = 10, 1/S = 1.25, W, = 1 x 

different Reynolds numbers with N = 1. It is seen that for Re = 1 the coating shape 
does not greatly differ from the sinusoidal one obtained in the course of the analytical 
study. This is supported by the conclusion that at small Reynolds numbers when flow 
behind a cylinder and in front of it is close to symmetrical the coating is shifted as a 
whole unit relative to the solid cylinder, hardly modifying its shape. As the Reynolds 
number increases, the flow loses its symmetry, the recirculation flow region appears, 
and the coating in the region of the rear stagnation point becomes thinner, acquiring 
a shape similar to the one in figure 12 (figure 13, curve d ) .  

It is clear that as the magnetic fluid viscosity also determines the flow structure and 
pressure distribution along the coating surface, it is one of the main factors responsible 
for the coating deformation magnitude. For a fixed value of the Reynolds number the 
magnetic-fluid viscosity variation alters the parameter N only. It has been found that 
the relationship between the coating deformation magnitude and magnetic-fluid 
viscosity is non-monotonic in nature. The quantity A< = I<(@ - a1 calculated at the 
forward and rear stagnation points has been taken as a quantitative measure of the 
coating deformation magnitude. From figure 14 it is seen that for small and large 
magnetic-fluid viscosities the deformation magnitude noticeably falls. Apparently, this 
may be attributed to the two-fold effect of this viscosity on coating deformation. On 
the one hand, decreasing the magnetic-fluid viscosity v z  reduces the pressure drop 
inside the coating and, hence, the deformation. But, on the other hand, the decrease 
gives rise to a surface velocity vT, thereby augmenting the coating deformation. The 
balance of these two mechanisms specifies the resultant deformation. As seen from 
figure 14, there is a maximum for N - 10. 

Coating deformation also grows with increasing flow velocity, i.e Reynolds number 
(figure 15). The results obtained show that in the non-separated flow region (Re < 10) 
the relation A<(Re) is linear. At large Re when the flow asymmetry ahead of and behind 
the cylinder increases, the deformation degree grows sharply with increasing Re. 

A magnetic field is the only force keeping the coating on the cylinder surface. When 
the field falls off with parameter W,, coating deformation under the action of the flow 
naturally increases. From figure 16 it is seen that the relation A[( W,) is practically 
linear. This is expected, as coating deformation only slightly alters the external flow 
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FIGURE 15. Influence of Reynolds number on the interface deformation. N = 100, 1/S = 1.4, 
w, = 1 x 10-3. 
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FIGURE 16. Deformation at the front critical point us. 4. Re = 10, N = 100. (a) 1/S = 1.6, 
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structure, i.e. the hydrodynamic effect on the coating hardly changes, and the 
deformation magnitude is practically determined by the W/Bo, ratio alone, i.e. W,. 
This means that the relation AC(K) must be almost linear in nature. Possibly, the 
behaviour of the relation changes as ACfront+ 1/6- 1, i.e. as the coating thickness 
decreases at the forward stagnation point to zero. However, in the course of the 
numerical analysis no corresponding results have been obtained: for 6- 1 -ASfront < 
0.1 the iteration process diverged. It is difficult to point uniquely to whether the reason 
for the divergence is numerical or physical in nature: in the course of the above- 
described experiment the coating was blown off by the flow before the coating thickness 
at the forward stagnation point becomes equal to zero. Therefore, it may be assumed 
that the numerical instability at small thicknesses has a physical nature. 

6. Conclusion 
The method of modifying viscous fluid flow structure over a solid body by coating 

it with a layer of magnetic fluid is investigated analytically, numerically and 
experimentally. It is discovered that a magnetic-fluid coating could prevent flow 
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separation and lead to drag reduction. These effects are possible if the viscosity of the 
magnetic fluid is less than the viscosity of the outer fluid. The analysis of the shape of 
the coating interface shows that a magnetic-fluid coating could be effectively established 
by the magnetic field of the solid. 

The method studied could be used for modifying flow structure, leading to drag 
reduction in flows of highly viscous fluids such as oil or chemical products. The 
magnetic fluid does not have to be soluble in the outer fluid. 
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